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ABSTRACT. In this expository article we discuss a recent result on nontriviality of Ceresa cycles of
Fermat curves modulo rational equivalence.

1. Introduction

Let C be a complex smooth projective curve of positive genus. Let Jac(C) be the Jacobian
variety of C. Choose a base pointQ ∈ C. Let CQ be the image of C under the Albanese embedding
C −→ Jac(C) sending Q to zero. Let C−Q be the image of CQ under the inversion map. The
algebraic cycle

[CQ]− [C−Q ],

on Jac(C), called the (first) Ceresa cycle, is easily seen to be homologically trivial. In his funda-
mental paper [Ha83a], B. Harris expressed the image of the Ceresa cycle under the Hodge theoretic
Abel-Jacobi map in terms of iterated integrals. He then used this in [Ha83b] to show that in the
case of the Fermat curve F (4) of degree 4, the Ceresa cycle is algebraically nontrivial. This was the
first explicit example of a homologically trivial algebraic cycle which is not algebraically trivial.

Over the years, adaptations of the Hodge theoretic approach of Harris have been applied by
others to other Fermat curves and their quotients (see [Ot12], [Ta16] and the references therein).
In these argument one obtains a sufficient condition for nontriviality (resp. being of infinite order)
of the Ceresa cycle modulo algebraic equivalence in terms of non-integrality (resp. irrationality)
of some period integrals (see Section 5). For a specific given Fermat curve (e.g. F (4)), the non-
integrality can be checked using numerical approximations. The question of irrationality of these
periods, however, is much harder and is not known in any cases. Thus without further help from
transcendetal number theory, the technique only gives nontriviality results, and it can only be
applied to one curve at a time. In particular, it does not give unconditional results about infinite
collections of curves.

There have been many developments since the original work [Ha83a] of Harris on the geom-
etry of quadratic iterated integrals on curves. Pulte [Pu88] re-interpreted the result of Harris on
the Abel-Jacobi image of the Ceresa cycle in terms of Hain’s Hodge theory of iterated integrals.
Further connections and applications to algebraic and arithmetic geometry have been found since
then. In particular, the fairly recent work [DRS12] enables one to construct rational points on the
Jacobian using the Hodge theory of iterated integrals on the curve, assuming the curve and the
base point are defined over a subfield of C.

Let F (n) be the Fermat curve of degree n, defined by

xn + yn = zn.

In [EsMu] we showed that if p is a prime number > 7, then the Ceresa cycles of F (p) are of infinite
order modulo rational equivalence. The argument is mainly Hodge theoretic and uses the geometry
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of quadratic iterated integrals on curves, but instead of the original period approach of [Ha83b]
it uses [DRS12] to relate the statement to a theorem of Gross and Rohrlich [GrRo78] on points
of infinite order in Jacobians of Fermat curves. This enables us to go beyond the limitations of
the period approach. The drawback is that our result is only modulo rational equivalence at the
moment. It would be very interesting to see if one can refine the argument to get the result for
algebraic equivalence.

In this expository article our goal is to give an overview of the result in [EsMu] for nonspe-
cialists. We have made an effort to keep the necessary background at a minimal level, hoping to
make the article accessible to a broad audience. The article is organized as follows. In the next
section, we recall a theorem of Gross and Rohrlich on points of infinite order in Jacobians of Fer-
mat curves. Our result can be thought of a higher dimensional analog of this. In Section 3 we go
over some background material on algebraic cycles and Hodge theory. We then prove the result
in Section 4. Finally, in Section 5 we review what is known about Ceresa cycles of Fermat curves
(and their quotients) modulo algebraic equivalence, and give a brief sketch of Harris’ proof of the
nontriviality in the case of F (4). The hope is that this would make the limitations of the period
approach more clear to the non-expert reader.

Acknowledgements. This article is based on a talk given by the second author at the Interna-
tional Conference on Number Theory and Discrete Mathematics (ICNTDM 2020). He thanks the
organizers, especially Professor Ambat Vijayakumar, for the invitation to speak.

2. A theorem of Gross and Rohrlich

Let p be a prime number. The Fermat curve F (p) of degree p defined by

xp + yp = zp

has genus (p − 1)(p − 2)/2. For each 1 ≤ s ≤ p − 2, let Cs = Cs(p) be the projective curve defined
(in affine coordinates) by

yp = x(1− x)s;

this has genus (p− 1)/2. There is morphism

ϕs : F (p) −→ Cs (x, y, 1) 7→ (xp, xys, 1).

Denoting the Jacobian1 variety of a curve by Jac( ), let

(ϕs)∗ : Jac(F (p)) −→ Jac(Cs)

be the pushforward map. Faddeev [Fa61] showed that the map

((ϕs)∗)s : Jac(F (p)) −→
∏

1≤s≤p−2

Jac(Cs)

is an isogeny.2

Let η be a primitive 6th root of unity in C. Consider the following three points on F (p):

P1 = (η, η−1, 1), P2 = P1 = (η−1, η, 1), Q = (1, 0, 1) .

Being invariant under the action ofGal(Q/Q), the point [P1]+[P2]−2[Q] of Jac(F (p)) is Q-rational.
A theorem of Gross and Rohrlich [GrRo78, Theorem 2.1] asserts:

THEOREM 1 (Gross and Rohrlich). If s 6= 1, (p− 1)/2, p− 2 the point (ϕs)∗([P1] + [P2]− 2[Q])
of Jac(Cs) is of infinite order.

Thus in particular, [P1] + [P2] − 2[Q] is a Q-rational point of infinite order in Jac(F (p)). In
other words, it is a homologically trivial 0-cycle defined over Q which is of infinite order modulo
rational equivalence. Our result can be thought of as a 1-dimensional analog of this.

1A reader not familiar with Jacobian varieties and pushforward maps can consult Section 3 for a brief review.
2An isogeny is a morphism which has a finite kernel and cokernel.
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3. Background

3.1. The classical Abel-Jacobi map. Here we shall recall the theorem of Abel and Jacobi for
smooth projective curves. A reference for the discussion is [Mu93].

Recall that on a smooth projective complex curve C, a divisor is an element of the free abelian
group on the set (of complex points of) C. Denote this free abelian group by Div(C). If P ∈ C,
we will write [P ] for P considered as an element of Div(C), so that a divisor is a formal sum∑
P∈C

nP [P ] where the nP are integers all but finitely many of which are zero. The integer
∑
P

nP

is called the degree of this divisor. To any meromorphic function f on C one associates a divisor
div(f) =

∑
P∈C

nP (f)[P ], where nP (f) is the order of vanishing of f at P . A divisor is called principal

if it is the divisor of a meromorphic function. By the residue theorem, every principal divisor has
degree 0.

Let Div(C)0 (resp. Div(C)pr) denote the subgroup of divisors of degree 0 (resp. principal
divisors). We thus have

Div(C)pr ⊂ Div(C)0 ⊂ Div(C).

The quotient
Div(C)0

/
Div(C)pr

is a fascinating object with a rich history. Suppose C has genus g; thus the integral singular ho-
mology H1(C,Z) (where C is considered as a Riemann surface) is isomorphic to Z2g, and the space
Ωhol(C) of holomorphic 1-forms onC is g-dimensional over C. Integration along topological cycles
gives a map

H1(C,Z) −→ Ωhol(C)∨,

which is in fact injective. Given P and Q in C, if γ is a path from P to Q, we have a linear map∫
γ

: Ωhol(C) −→ C ω 7→
∫
γ

ω.

If we choose a different path γ′ from P to Q, the difference
∫
γ
−
∫
γ′

is in (the image of) H1(C,Z); thus

we have a well-defined element
Q∫
P

:=

∫
γ

(mod H1(C,Z)) ∈ Ωhol(C)∨

H1(C,Z)
,

where γ is any path from P to Q.
Every divisor of degree zero is a sum of divisors of the form [Q] − [P ]. By extending linearly,

we get a map

φ : Div(C)0 −→ Ωhol(C)∨

H1(C,Z)

which sends [Q]− [P ] to
Q∫
P

. One has the following famous result of Abel and Jacobi:

THEOREM 2. (a) (Jacobi’s theorem) φ is surjective.
(b) (Abel’s theorem) ker(φ) = Div(C)pr.

The induced isomorphism

AJ :
Div(C)0

Div(C)pr
−→ Ωhol(C)∨

H1(C,Z)

is called the Abel-Jacobi map.
Soon we will discuss how all of the above is generalized to higher dimensional varieties.



4 PAYMAN ESKANDARI AND V. KUMAR MURTY

3.2. Algebraic cycles. In this section we briefly recall some basic background about algebraic
cycles. The reader can consult [Fu98] or [Vo02] for the details.

Let X be a smooth projective variety over a field K. Let Zp(X) (resp. Zp(X)) be the free
abelian group on the set of irreducible closed subsets of X of dimension (resp. codimension) p.
The elements of Zp(X) (resp. Zp(X)) are called algebraic cycles of dimension (resp. codimension)
p. Thus for instance, Z0(X) is the free abelian group on the set of closed points of X (if K = C, just
the set of points of X in the classical sense). For an irreducible closed subset Z ⊂ X , we write [Z]
for the algebraic cycle associated to Z.

Algebraic cycles can be pushed forward and pulled back along suitable morphisms. Let f :
X → Y be a morphism over K. If f is proper, the pushforward f∗ : Zp(X) −→ Zp(Y ) is defined
for irreducible closed subsets Z ⊂ X of dimension p by

f∗([Z]) =

{
deg(Z/f(Z))[f(Z)] if f(Z) has dimension p
0 otherwise,

and then extending linearly to Zp(X). Here deg(Z/f(Z)) is the degree of the field extension
k(Z)/k(f(Z)), where k(−) is the function field. If f is flat of fixed relative codimension, then
the pullback f∗ : Zp(Y ) −→ Zp(X) is defined by setting f∗([Z]) for an irreducible closed sub-
set Z ⊂ Y to be the sum of the irreducible components of f−1(Z), counted with multiplicity (see
[Fu98]). Finally, one also has the intersection pairing

(Zp(X)×Zq(X))o −→ Zp+q(X),

where (Zp(X) × Zq(X))o is the subgroup of Zp(X) × Zq(X) generated of those pairs ([Z], [Z ′])
which intersect properly (see [Fu98] for what this precisely means).

There are various equivalence relations on algebraic cycles. Here we mention three that are
relevant in this article:

- Rational equivalence
- Algebraic equivalence
- Homological equivalence

Working modulo these relations, one has pushforwards along proper morphisms, pullbacks
along arbitrary morphisms, and a nice intersection theory where the intersection of every pair of
algebraic cycles is now defined. Roughly speaking, the subgroup Zp(X)rat (resp. Zp(X)alg) of
Zp(X) of cycles rationally (resp. algebraically) equivalent to zero is the subgroup generated by
differences of cycles that can be deformed to each other along P1 (resp. a curve). Being rationally
trivial is the natural generalization of the notion of principality for divisors. (See [Fu98] for precise
definitions.)

We shall discuss homological equivalence in more details. Assume K ⊂ C. There is a cycle
class map

Zp(X) −→ H2p(X,Z),

where in H2p(X,Z) we consider X with analytic topology. Let Z be a closed subvariety of dimen-
sion p (hence real dimension 2p). The class map sends [Z] to the image of the fundamental class of
Z under the natural map H2p(Z,Z) −→ H2p(X,Z).

Here is an analytic description of the class map: via the canonical isomorphisms

H2p(X,C) ∼= H2p(X,C)∨ ∼= H2p
dR(X)∨

(where HdR denotes C-valued smooth de Rham cohomology), the image of [Z] under the class
map is simply integration over the smooth locus of Z (which is a complex manifold of dimension
p).

The subgroup Zp(X)hom of homogically trivial cycles is the kernel of the cycle class map. One
can show that

Zp(X)rat ⊂ Zp(X)alg ⊂ Zp(X)hom.
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If X = C is a curve and p = 0, we have

Z0(C)rat = Div(C)pr, Z0(C)hom = Z0(C)alg = Div(C)0.

The Chow group of p-dimensional cycles (or p-cycles) on X is

CHp(X) :=
Zp(X)

Zratp (X)
.

This has subgroups

CHp(X)alg :=
Zp(X)alg

Zp(X)rat
⊂ CHp(X)hom :=

Zp(X)hom

Zp(X)rat
⊂ CHp(X).

The intersection product makes CH(X) :=
⊕
p
CHp(X) a commutative ring, called the Chow ring

of X .
We end this section with a few remarks.

REMARK. (1) The induced map CHp(X) −→ H2p(X,Z) is also called the class map.
(2) Often, one uses Poincaré duality to rewrite the class map as a map into cohomology, i.e.

as a map Zp(X) −→ H2p(X,Z). The advantage of writing things this way is that the map
gives a ring homomorphism CH(X) −→

⊕
pH

2p(X,Z).
(3) The images of an algebraic cycle under the cycle class map is a Hodge cycle3 (as a 2p-

form on a p-dimensional complex manifold will be zero unless it is of type (p, p)). The
celebrated Hodge conjecture predicts that after tensoring with Q, all Hodge classes in
H2p(X,Q) are in the image of the class map.

(4) The cycle class map CHp(X) −→ H2p(X,Z) in functorial with respect to pullbacks along
arbitrary morphisms and pushforwards along proper morphisms.

(5) Here we only discussed homological equivalence in the case of subfields of C and for sin-
gular cohomology. For any so called Weil cohomology theory there is a cycle class map
and hence a notion of homological equivalence. An example of a Weil cohomology the-
ory is étale cohomology with coefficients in Q`, with ` not equal to the characteristic of
K. When K ⊂ C, the comparison isomorphisms between different cohomology theories
show that the notion of homological equivalence is the same whether we work with sin-
gular or `-adic cohomology (for any `). Over arbitrary characteristic it is not known if the
notion of homological equivalence for various ` are the same.

3.3. Algebraic versus homological equivalence. We mentioned above that for any smooth
projective variety

Zp(X)rat ⊂ Zp(X)alg ⊂ Zp(X)hom.

Already in the case of divisors on curves rational and algebraic equivalence are different. The ques-
tion of whether algebraic and homological equivalence are different is however more interesting.
For 0-cycles, they are easily seen to be the same. For divisors (i.e. algebraic cycles of codimension
1) on varieties of arbitrary dimension, algebraic and homological equivalence coincide after ten-
soring with Q (a theorem of Matsusaka). For 0 < i < dim(X)−1 the situation is more complicated.
Griffiths [Grif69] proved that if X is a generic quintic in P4, then

Z1(X)hom

Z1(X)alg
⊗Q 6= 0.

The first explicit example of a homologically trivial algebraic cycle which is not algebraically trivial
was given by B. Harris [Ha83b]. We explain Harris’ result here since it is closely related to what

3A Hodge class is an element of H2p(X,Z) which belongs to the component H(p,p) of the Hodge decomposition.
See Section 3.4.
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we shall be doing in the following sections. It also gives us an opportunity to discuss some of the
fundamental objects that appear later.

Let C be a smooth complex projective curve. The group

Div(C)0

Div(C)pr
= CH1(C)hom

naturally carries the structure of an abelian variety, which by definition is called the Jacobian of C.
The more elementary approach for this is to use the theorem of Abel and Jacobi

CH1(X)hom ∼=
Ωhol(C)∨

H1(C,Z)
,

and then show that the compact complex torus Ωhol(C)
∨

H1(C,Z) is an abelian variety (by defining a so
called Riemann form on it). This leads to an analytic construction of the Jacobian variety. There is
also an algebraic construction of the Jacobian variety due to A. Weil which works over arbitrary
base fields. In particular, the algebraic construction shows that the Jacobian of C is defined over K
if C is defined over K ⊂ C.

With C a smooth complex projective curve as before, denote the Jacobian of C by Jac(C).
Then Jac(C) is an abelian variety of dimension equal to the genus g of C, and moreover, as an
abelian group,

Jac(C) = CH1(C)hom.

Fix Q ∈ C. We have a morphism

C −→ Jac(C) P 7→ [P ]− [Q]

called the Albanese map with base pointQ. If g > 0, this map is an embedding. Denote its image by
CQ. LetC−Q be the image ofCQ under the inversion map in Jac(C). Then [CQ]−[C−Q ] ∈ Z1(Jac(C))

is actually homologically trivial (by functoriality of the class map and the fact that inversion acts
trivially on H2(Jac(C))). The cycle [CQ] − [C−Q ] is called the (first) Ceresa cycle of C with base
point Q. As an element of the Chow group (i.e. modulo rational equivalence), the Ceresa cycle
may depend on the base point, but the dependence disappears modulo algebraic equivalence. The
Ceresa cycle was first studied by Ceresa [Ce83], who showed that for a generic curve of genus≥ 3,
it is algebraically nontrivial. Harris then proved:

THEOREM 3 (B. Harris [Ha83b]). The Ceresa cycle of the Fermat curve of degree 4 is alge-
braically nontrivial.

This was the first explicit example of a homologically trivial algebraic cycle which is alge-
braically nontrivial. The methods of Griffiths, Ceresa, and Harris were all transcendental and used
a generalization of the Abel-Jacobi map (see the next section). We shall come back and say more
about the argument of Harris in Section 5. Soon after Harris, Bloch [Bl84] used an `-adic approach
to show that indeed, the Ceresa cycle of the Fermat curve of degree 4 is of infinite order modulo
algebraic equivalence.

3.4. Griffiths Abel-Jacobi map. Our goal in this section is to recall the Abel-Jacobi map of
Griffiths, which generalizes the classical Abel-Jacobi map to cycles and varieties of arbitrary di-
mension. This map is an important tool in trying to distinguish between different equivalence
relations on algebraic cycles. A nice reference for the material of this section is [Vo02].

Before we give the construction of the Abel-Jacobi map, let us briefly recall what a Hodge
structure is.

An integral Hodge structure A of weight n ∈ Z consists of the following data:
(i) a finitely generated Z-module AZ
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(ii) a decomposition AC := AZ ⊗ C =
⊕

p,q∈Z,p+q=nA
p,q (called the Hodge decomposition) of

AC into complex vector subspaces such that Aq,p = Ap,q (where the complex conjugation
is through the second factor in AZ ⊗ C).

Item (ii) can be equivalently replaced by
(ii)’ a finite decreasing filtration F · of the complex vector spaceAC (called the Hodge filtration)

such that for each p,
AC = F pAC ⊕ Fn−p+1AC .

The passage between the Hodge filtration and decomposition is as follows:

F pAC =
⊕

p′+q′=n, p′≥p
Ap
′,q′

and
Hp,q = F pAC ∩ F qAC .

Note that if A is a Hodge structure of odd weight, then AC must have even dimension (as Ap,q and
Aq,p must have the same dimensions).

The prototype example of an integral Hodge structure of weight n is the degree n cohomol-
ogy of a smooth complex projective variety. Here the underlying abelian group is Hn(X,Z), and
identifying

Hn(X,Z)⊗ C ∼= Hn(X,C) ∼= Hn
dR(X)

(where as before, Hn
dR is the complex valued smooth de Rham cohomology), the (p, q)-component

of the Hodge decomposition is the space of cohomology classes that are representable by closed
smooth differential forms which are locally of the form fdz1 ∧ · · · ∧ dzp ∧ dzp+1 ∧ · · · ∧ dzn (i.e. with
p (resp. q) factors of dz (resp. dz)). We denote this Hodge structure by Hn(X).

Recall that the target space for the classical Abel-Jacobi map associated with divisors on a
curve C is the complex torus

Ωhol(C)∨

H1(C,Z)
.

One can identify

Ωhol(C) = F 1H1(X,C),

so that the target space of the classical Abel-Jacobi map for curves is

(F 1H1(X,C))∨

H1(X,Z)
.

We are ready to define the Abel-Jacobi map of Griffiths. Let X be a smooth projective variety over
C. Fix p ≥ 0. We will first define be a map

φ : Zp(X)hom −→ (F p+1H2p+1(X,C))∨

H2p+1(X,Z)
.

The target is a compact complex torus of dimension 1/2 dimCH2p+1(X,C).
Given Z ∈ Zp(X)hom, let T be an integral topological (2p + 1)-chain whose boundary is Z.

Given a cohomology class in F p+1H2p+1(X,C), choose a representative ω that is a (closed) smooth
(2p+ 1)-form on X of holomorphy degree≥ p+ 1 (i.e. locally with at least p+ 1 factors of the form
dzi). Consider the map

F p+1H2p+1(X,C) −→ C [ω] 7→
∫
T

ω.
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This is well-defined: if ω′ is another choice of representative (satisfying the holomorphy degree
condition), ω−ω′ is exact and of holomorphy degree≥ p+1; by Hodge theory, we have ω−ω′ = dν
for some 2p-form ν of holomorphy degree ≥ p+ 1, so that by Stokes theorem∫

T

(ω − ω′) =

∫
Z

ν = 0,

as Z has complex dimension p and hence ν vanishes on Z.
If T ′ is another integral chain such that ∂T ′ = ∂T = Z, then

∫
T

and
∫
T ′

differ by an element of

H2p+1(X,Z), so that we get a well defined element

φ(Z) := [

∫
∂−1Z

] ∈ (F p+1H2p+1(X,C))∨

H2p+1(X,Z)
.

(Here ∂−1Z is any integral chain whose boundary is Z.) We have defined the map φ. Note that if
X = C and p = 0, this is simply the map φ of Section 3.1.

Recall from Section 3.1 the theorems of Abel and Jacobi regarding the kernel and surjectivity
of φ in the case of divisors on curves. In the general case described above it is easy to see that

Zp(X)rat ⊂ ker(φ).

The Abel-Jacobi map is the induced map

AJ : CHp(X)hom −→ (F p+1H2p+1(X,C))∨

H2p+1(X,Z)
.

We can rewrite the target of the Abel-Jacobi map more elegantly, as follows. First, let us
introduce the dual to a Hodge structure: For any integral Hodge structure A with underlying Z-
module AZ, the dual Hodge structure A∨ is the integral Hodge structure on AZ

∨ (= HomZ(AZ,Z))
with the Hodge filtration defined by

F p(AZ
∨⊗ C) = F p(AC

∨) := {f ∈ AC
∨ : f(F−p+1AC) = 0}.

In terms of the Hodge decomposition, this translates to (A∨)p,q = (A−p,−q)∨. If H has weight n,
its dual will have weight −n. Using this (and by the duality between homology and cohomology)
we get a Hodge structure of weight−n on the homology Hn(X,Z) of a smooth complex projective
variety, which we denote by Hn(X).

Note that by definition, F−pH2p+1(X,C) is the kernel of the restriction map

H2p+1(X,C) ∼= H2p+1(X,C)∨ −→ (F p+1H2p+1(X,C))∨.

Thus this map gives an isomorphism

H2p+1(X,C)

F−pH2p+1(X,C) +H2p+1(X,Z)
∼=

(F p+1H2p+1(X,C))∨

H2p+1(X,Z)
.

We shall will use this isomorphism to replace the target of the Abel-Jacobi map with

H2p+1(X,C)

F−pH2p+1(X,C) +H2p+1(X,Z)
.

In general, for any integral Hodge structure A of odd weight 2k− 1, define the Griffiths inter-
mediate Jacobian of A to be

JA :=
AC

F kAC +AZ
.
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It is not hard to see that this is a compact complex torus of dimension 1
2 dimCAC. To summarize,

the Abel-Jacobi map AJ is now a map

CHp(X)hom −→ JH2p+1(X).

We end this discussion with some remarks.

REMARK. (1) One often uses Poincaré duality and considers the Abel-Jacobi map on
CHp(X)hom as a map into the intermediate Jacobian of H2 dim(X)−2p−1(X). In the setting
of this article, however, it is more convenient to work with the homological Abel-Jacobi
map, defined as above.

(2) In general, the Griffiths Jacobian JH2p+1(X) for a smooth projective variety is usually not
an abelian variety. It is, however, an abelian variety in the cases where p = 0 (correspond-
ing to 0-cycles), and p = dim(X) − 1 (corresponding to divisors); the abelian varieties in
the two cases are called the Albanese and Jacobian varieties, respectively.

(3) Recall that in the classical case of 0-cycles on curves, the Abel-Jacobi map is an isomor-
phism. In the general case of cycles of arbitrary dimension the Abel-Jacobi map can be
neither injective nor surjective. A theorem of Mumford shows that the kernel of the Abel-
Jacobi map can be very big. But for varieties over number fields, the conjectures of Bloch
and Beilinson on Chow groups predict the Abel-Jacobi map to be injective after tensoring
with Q (see [Ja94]).

(4) Let V2p+1(X) be the largest Hodge substructure ofH2p+1(X) whose complexification lives
in H−p,−p−1 ⊕H−p−1,−p ( = the dual of Hp,p+1 ⊕Hp+1,p ⊂ H2p+1(X)). Then

AJ(CHp(X)alg) ⊂ JV2p+1(X).

The subtorus JV2p+1(X) of JH2p+1(X) is in fact an abelian variety, and we denote it by
JalgH2p+1(X) (the “algebraic part” of JH2p+1(X)).

(5) One can define the Abel-Jacobi map at the motivic level as a map

CHp(X)hom −→ ExtMM(K)(H
2p+1(X),1);

here X is a smooth projective variety over a field K of characteristic zero, and the Ext
group is the Yoneda Ext1 group in a reasonable category of mixed motives over K. See
Jannsen’s book [Ja90]. Using a classification result of Carlson on extensions in the category
of mixed Hodge structures (see Sections 3.5 and 3.6), we can think of the Griffiths Abel-
Jacobi map is the Hodge realization of the motivic Abel-Jacobi map.

(6) A rational Hodge structure is defined similarly to an integral Hodge structure, except
that one starts with a finite-dimensional vector space over Q (rather than a Z-module).
Of course, any integral Hodge structure also gives a rational Hodge structure, by simply
“forgetting the integral structure”, i.e. replacingAZ byAQ = AZ⊗Q. For a rational Hodge
structure A of odd weight 2k − 1, similar to the integral case, we define the intermediate
Jacobian to be JA := AC

FkAC+AQ
. After tensoring with Q, the Abel-Jacobi map gives a map

CHp(X)hom ⊗Q −→ JH2p+1(X),

where the latter intermediate Jacobian is that of the rational Hodge structure H2p+1(X).
From this point until the end of Section 4 all our Hodge structures are rational.

3.5. Mixed Hodge structures. The notion of a mixed Hodge structure was defined by Deligne
in 1970’s to generalize Hodge theory to the setting of arbitrary complex varieties. Before we say
what a mixed Hodge structure is, recall that if W· is an increasing filtration on a vector space V
over a field F , one defines GrWn (V ) := Vn/Vn−1. If K is a field extension of F , the filtration W·
extends to a filtration on VK := V ⊗K in an obvious way; we denote the filtration on VK also by
W· and identify GrWn (VK) = GrWn (V )⊗K.

A (rational) mixed Hodge structure A consists of the data of
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(i) a finite-dimensional vector space AQ over Q
(ii) a finite increasing filtration W· on AQ (called the weight filtration)

(iii) a finite decreasing filtration F · of AC (called the Hodge filtration)
such that for each n, the rational vector space GrnAQ equipped with the filtration on its complexi-
fication defined by

F p(GrWn AC) :=
(F pAC ∩WnAC) + Wn−1AC

Wn−1AC
forms a Hodge structure of weight n.

Note that if A is Hodge structure of weight n, by setting Wn−1(AQ) = 0 and WnAQ = AQ
we can think of A as a mixed Hodge structure. A mixed Hodge structure is a Hodge structure of
weight n if and only if it satisfies those same conditions (i.e. its weight filtration is concentrated in
Wn). A mixed Hodge structure is called pure if it is a Hodge structure of weight n for some n.

By Deligne ([De71] and [De74]), for every complex varietyX (which is not necessarily smooth
or projective), each cohomology Hn(X,Q) underlines a canonical mixed Hodge structure, gener-
alizing the picture for smooth projective varieties. As in the smooth projective case, we denote this
mixed Hodge structure by Hn(X).

The notion of morphisms between mixed Hodge structures is defined in the obvious way: a
morphism A −→ B is a linear map f : AQ −→ BQ which is compatible with the two filtrations, i.e.

f(W·AQ) ⊂W·BQ, f(F ·AC) ⊂ F ·BC.

It turns out (and this is crucial) that in fact, morphisms will then be actually strictly compatible
with the filtrations, i.e.

f(W·AQ) = f(AQ) ∩W·BQ, f(F ·AC) = f(AC) ∩ F ·BC.

Thanks to this strictness, the category of mixed Hodge structures is an abelian category; kernels
and quotients are obtained by taking the kernels and quotients of the underlying vector spaces
and equipping them with the induced filtrations.

The category of mixed Hodge structures is a tensor category; the tensor product of A and B is
given by

(A⊗B)Q = AQ⊗BQ , Wn(A⊗B)Q =
∑
r+s=n

WrAQ⊗WsBQ , F p(A⊗B)C =
∑
r+s=p

F rAC⊗F sBC

(i.e. by taking the tensor product of the underlying vector spaces and the tensor product of the
filtrations in the usual way). The identity of the tensor product is the unique Hodge structure
of weight zero on Q, denoted by 1 (with 1Q = Q, and 1C = C in bidegree (0,0) of the Hodge
decompositon).

For any A and B one also has a mixed Hodge structure Hom(A,B), with underlying rational
vector space Hom(AQ, BQ) and the filtrations given by

WnHom(AQ, BQ) = {f : AQ −→ BQ : f(W·AQ) ⊂W·+nBQ}
and

F pHom(AC, BC) = {f : AC −→ BC : f(F ·AC) ⊂ F ·+pBC},
where we have identified Hom(AQ, BQ) ⊗ C = Hom(AC, BC). The object Hom(A,B)is called the
internal Hom of the pair (A,B). If A and B are pure of weights m and n, then Hom(A,B) is pure
of weight n −m. The object A∨ := Hom(A,1) is called the dual of A; this is compatible with our
earlier definition of dual in the case of a Hodge structure of weight n. All the usual canonical
isomorphisms from linear algebra give us isomorphisms in the category of mixed mixed Hodge
structures, e.g.

Hom(A,B) ∼= A∨⊗B
with the isomorphism being simply the canonical isomorphism Hom(AQ, BQ) ∼= AQ

∨⊗BQ.
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For each integer n, we define Q(n) to be the Hodge structure of weight −2n with underlying
rational vector space Q (so Q(n)C = C, concentrated in bidegree (−n,−n)). When n = 0 this is
just the unit object 1. The object Q(1) is called the Tate object and can be identified with H2(P1) =
H1(A1 − {0}) (A1 = the affine line). We can identify Q(1)⊗n = Q(n) (with the convention that
A⊗−n := (A⊗n)∨ when n ≥ 0). For any A, the objects A(n) := A⊗Q(n) are called the Tate twists of
A.

REMARK. (1) In motivic contexts one takes the underlying rational vector space of Q(n)
to be (2πi)nQ ⊂ C; this is so that the motive Q(n) (with de Rham realization Q when
working with motives over Q) has the right periods. Indeed, the motive Q(−1) is just
H1(A1 − {0}) and its periods are rational multiples of 2πi. One then also would have to
adjust the cycle class map by multiplying with a power of 2πi so that it is compatible with
the cycle class map to algebraic de Rham cohomology. In purely Hodge theoretic contexts,
however, the more naive definitions (which we gave here) are good enough.

(2) Thanks to existence of a nice tensor structure and internal Homs the category of mixed
Hodge structures is a (neutral) Tannakian category over Q.

3.6. Extensions of mixed Hodge structures. One of the features of the category of mixed
Hodge structures which makes it very rich is existence of interesting nontrivial extensions. Our
goal in this section is to review a result of Carlson [Ca80] on classifying extensions of mixed Hodge
structures. We begin by a brief review of Yoneda Ext groups in the setting of an arbitrary abelian
category.

Let A and B be objects in an abelian category A. By a (Yoneda) extension of A by B we mean
a short exact sequence

(1) 0 B E A 0.

If there is a commutative diagram

0 B E A 0

0 B E′ A 0,

= =

with exact rows, we say the two extensions given in the two rows are equivalent. We denote the
set of equivalence classes of extensions of A by B by Ext(A,B) (or Ext1(A,B), because one can
also define extensions of higher lengths).

There is a natural operation called Baer summation which makes Ext(A,B) an abelian group.
To discuss this we should first discuss pullbacks and pushforwards of extensions.

A morphism f : A′ −→ A induces a map Ext(A,B) −→ Ext(A′, B) called pullback (along f ).
Indeed, the pullback of the extension class of Eq. (1) is the class of the fibred product E×AA′, with
the obvious maps from B and to A′. (For us, E×AA′ is just {(e, a′) ∈ E×A′ : π(e) = f(a′)}, where
π : E −→ A is the surjective arrow in Eq. (1).)

Dually, a morphism g : B −→ B′ induces a map Ext(A,B) −→ Ext(A,B′) called pushfor-
ward (along g). The pushforward of the class of the extension Eq. (1) is the class of the fibred
coproduct B′ tB E with the obvious maps from B′ and to A. (The fibred coproduct B′ tB E is the
quotient of B′ ⊕ E by the image of (f,−ι), where ι : B −→ E is the injective arrow in Eq. (1).)

Now the sum of two extension Eq. (1) and an extension with E′ in the middle is obtained by
first taking the direct sum of the two extensions

0 B ⊕B E ⊕ E′ A⊕A 0,

then pulling it back along the diagonal map A −→ A ⊕ A (i.e a 7→ (a, a)) and pushing it forward
along the codiagonalB⊕B −→ B (i.e. (b1, b2) 7→ b1 +b2). This is well-defined for extension classes
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and makes Ext(A,B) an abelian group. The identity is the class of the trivial extension

0 B B ⊕A A 0,

(with the natural inclusion and projection maps).
We now return to the setting of mixed Hodge structures. Also assume, for convenience, that

the highest weight of B is less than the lowest weight of A (the highest (resp. lowest) weight is
the smallest weight where the weight filtration stabilizes (resp. is nonzero)). There is canonical
isomorphism

(2) Ext(A,B) ∼=
Hom(AC, BC)

F 0Hom(AC, BC) +Hom(AQ, BQ)

due to Carlson [Ca80]. The isomorphism corresponds the class of an extension

0 B E A 0
ι π

with the class of the map r ◦ s in the quotient on the right hand side of Eq. (2), where s is a section (
= right inverse) of the map π : EC −→ AC compatible with the Hodge filtration and r is a retraction
( = left inverse) of the map ι : BQ −→ EQ. (A different choice of s (resp. r) results in a difference in
F 0Hom(AC, BC) (resp. Hom(AQ, BQ)).)

We will be particularly interested in the case were A and B are pure, and the weight of B is 1
less than the weight of A, so that Hom(A,B) is pure of weight −1. Then the isomorphism reads

Ext(A,B) ∼= JHom(A,B).

3.7. Hodge theory of the fundamental group. LetX be a smooth quasiprojective complex va-
riety. Choose a base point Q ∈ X . Let I ⊂ Q[π1(X,Q)] be the augmentation ideal (i.e. the kernel of
the homomorphism Q[π1(X,Q)]→ Q which sends the elements of π1(X,Q) to 1), where π1(X,Q)
is the topological fundamental group, i.e. the fundamental group of the associated complex man-
ifold. For each n ≥ 1, Hain ([Hain87a] and [Hain87b]) defines a mixed Hodge structure on the
underlying rational vector space (

I

In+1

)∨
.

We denote this mixed Hodge structure by Ln(X,Q). For n = 1, the underlying rational vector
space is

(
I
I2

)
∨, which by the theorem of Hurewicz can be identified with H1(X,Q); the mixed

Hodge structure L1(X,Q) then coincides withH1(X) (and in particular, is independent of the base
point Q). In general, the construction of Ln(X,Q) uses K. T. Chen’s de Rham theorem, which we
briefly recall here: If ω1, . . . , ωn are (not necessarily closed) smooth 1-forms on X and γ : [0, 1] −→
X is a piecewise smooth path with γ∗ωi = fi(t)dt, then the (Chen-type) iterated integral

∫
γ
ω1 . . . ωn

is defined as ∫
γ

ω1 . . . ωn :=

∫
0≤t1≤···≤tn≤1

f1(t1) . . . fn(tn)dt1 . . . dtn.

An iterated integral is a linear combination of such expressions. We say its length is ≤ n if there
are at most n forms in each expression. An iterated integral gives a function on the path space
of X . Those iterated integrals whose values at loops at Q only depends on the homotopy class
of the loops are called closed; they give functions on π1(X,Q), and hence on C[π1(X,Q)]. Basic
properties of iterated integrals (see [Hain87a], for instance) imply that an iterated integral of length
≤ n vanished on In+1 (or In+1 ⊗ C). Chen’s de Rham theorem asserts that the elements of(

I

In+1

)
∨⊗ C = {linear maps I −→ C which vanish on In+1}

are the closed iterated integrals of length ≤ n.
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The weight and Hodge filtrations onLn(X,Q) are then defined using the description ofLn(X,Q)
as a space of iterated integrals. We refer the reader to the original papers [Hain87a] and [Hain87b]
of Hain for the details (the former paper might be more suitable for a first read). The construction
is functorial in the pair (X,Q). The natural identification(

I

In

)∨
⊂
(

I

In+1

)∨
is compatible with the mixed Hodge structures and makes Ln−1(X,Q) a subobject of Ln(X,Q).

In this article we are concerned with L2(X,Q), i.e. the mixed Hodge structure on the space
of closed quadratic iterated integrals. Here we recall some facts about this mixed Hodge structure.
The reader can consult [Hain87a] for the proofs. As a complex vector space, L2(X,Q)C is the direct
sum of H1(X,C) (the elements of which are considered as functionals on I in the obvious way),
and the space of Chen iterated integrals of the form∫

ω1ω2 + ν,

where ω1, ω2, ν are complex-valued smooth 1-forms on X , with ω1, ω2 closed and ω1 ∧ω2 + dν = 0.
(Such an integral is closed.)

One has an exact sequence of mixed Hodge structures

(3) 0 H1(X) L2(X,Q) H1(X)⊗H1(X),
q

where the injective arrow is inclusion, and the map q sends an element f : I −→ Q (vanishing on
I3) to the element of

H1(X,Q)⊗H1(X,Q) ∼=
(
H1(X,Q)⊗H1(X,Q)

)
∨

given by
[γ1]⊗ [γ2] 7→ f((γ1 − 1)(γ2 − 1)).

(Here the γi are elements of π1(X,Q), and 1 is the constant loop. This is well-defined because f
vanishes on I3.) The image of q is the kernel of the cup product map

H1(X)⊗H1(X) −→ H2(X).

In particular, note that if X is a punctured algebraic curve then this is all of H1(X)⊗H1(X).

4. Ceresa cycles of Fermat curves modulo rational equivalence

Let C be a smooth projective curve over C of positive genus. Recall that after choosing a base
point Q, we have the Ceresa cycle

[CQ]− [C−Q ] ∈ CH1(Jac(C))hom.

We also have the Abel-Jacobi map

AJ : CH1(Jac(C))hom −→ JH3(Jac(C)).

In [Ha83a] B. Harris calculated AJ([CQ] − [C−Q ]) in terms of iterated integrals; a result which was
later reinterpreted by Pulte [Pu88] in the language of the Hodge theory of the fundamental group
of C. In [Ha83b] Harris used his result to show that AJ([CQ] − [C−Q ]) does not lie in the algebraic
subtorus JalgH3(Jac(C)) (see Remark (4) at the end of Section 3.4), concluding that the Ceresa cycle
of F4 is nontrivial modulo algebraic equivalence. Shortly after, Bloch [Bl84] used an étale analog of
the Abel-Jacobi map to show that the Ceresa cycle of F4 is in fact of infinite order modulo algebraic
equivalence.

The Hodge theoretic argument of Harris (adopted and applied later by Tadokoro and Otsubo
to other Fermat curves and quotients) involves some period calculations. We shall discuss this
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in more details in Section 5, but here let us just say that non-integrality (resp. irrationality) of
these periods implies that the Ceresa cycle is nontrivial (resp. of infinite order) modulo algebraic
equivalence. For a specific curve (e.g. F (4)), the non-integrality can be checked using numerical
approximations. Irrationality of these periods is a much harder problem and is not known in
any cases. Thus without further help from transcendetal number theory, the technique has the
following limitations: it only can prove nontriviality results, and it can only be applied to one
curve at a time curve. In particular, it can’t prove nontriviality for an infinite collection of curves.

In [EsMu] we proved the following result:

THEOREM 4. Let p be a prime number > 7. Then for any choice of base point, the Ceresa cycle
of F (p) is of infinite order modulo rational equivalence.

The argument combines several Hodge theoretic results on the Hodge theory of the funda-
mental group of a curve ([Ha83a], [Pu88], [Ka01] and [DRS12]) with the following number theo-
retic results:

- the theorem of Gross and Rohrlich on points of infinite order in Jac(F (p)) (Theorem 1)
- an analog of the Manin-Drinfeld theorem for Jac(F (p)) due to Rohrlich, stating any ele-

ment ofCH0(F (p))hom supported on the set of cusps (points satisfying xyz = 0) is of finite
order.

PROOF OF THEOREM 4. We present the argument in a few steps.

1. Fix Q ∈ F (p). We consider the Abel-Jacobi map tensored with Q

AJ : CH1(Jac(F (p))hom ⊗Q −→ JH3(Jac(F (p))),

where H3(Jac(F (p))) is considered as a rational Hodge structure. The goal is to show

AJ([(F (p))Q]− [(F (p))−Q]) 6= 0.

2. Use the theorem of Carlson to identify

JH3(Jac(F (p))) ∼= Ext(H3(Jac(F (p)),Q(−1)).

(Note that the intermediate Jacobians of H3(Jac(F (p))) and H3(Jac(F (p)))(−1) are the same.)

3. The cohomology of Jac(F (p)) is the exterior algebra on H1(Jac(F (p))) (as it is the case for
any abelian variety). Moreover, via the Albanese map we can identify H1(Jac(F (p))) = H1(F (p));
to simplify the notation we shall just write H1 for this degree 1 cohomology. Thus

H3(Jac(F (p)) =
∧3

H1.

4. Let (H1 ⊗H1)′ be the kernel of the cup product map

H1 ⊗H1 −→ H2(F (p))

on F (p). It is easy to see that the natural map

H1 ⊗ (H1 ⊗H1)′ −→
∧3

H1

is surjective. This gives

Ext(
∧3

H1,Q(−1)) ⊂ Ext(H1 ⊗ (H1 ⊗H1)′,Q(−1)).
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5. By the work of Pulte [Pu88] and Harris [Ha83a] the extension

AJ([(F (p))Q]− [(F (p))−Q]) ∈ Ext(H1 ⊗ (H1 ⊗H1)′,Q(−1))

comes from the mixed Hodge structure L2(F (p), Q) on the space of quadratic iterated integrals on
F (p). Indeed, there is a short exact sequence

0 H1 L2(F (p), Q) (H1 ⊗H1)′ 0

(see Eq. (3)). Let EQ be the corresponding extension class

EQ ∈ Ext((H1 ⊗H1)′, H1)
Poincaré duality

∼= Ext(H1 ⊗ (H1 ⊗H1)′,Q(−1)).

Then by Pulte [Pu88, Theorem 4.10] (see also Section 3 of [Ha83a]),

AJ([(F (p))Q]− [(F (p))−Q]) = 2EQ .

The goal is now to show that EQ is nonzero.

6. Let P 6= Q be another point in F (p). We identify H1(F (p) − {P}) ∼= H1 via the isomor-
phism induced by the inclusion F (p) − {P} ⊂ F (p). The inclusion F (p) − {P} ⊂ F (p) gives a a
commutative diagram

0 H1 L2(F (p), Q) (H1 ⊗H1)′ 0

0 H1 L2(F (p)− {P}, Q) H1 ⊗H1 0 .

= ⊂ ⊂

Let EPQ be the extension class given by the bottom row. Thus

EPQ ∈ Ext(H1 ⊗H1, H1)
Poincaré duality

∼= Ext(H1 ⊗ (H1 ⊗H1),Q(−1))

and EQ is the restriction of EPQ to H1 ⊗ (H1 ⊗ H1)′ (i.e. the pullback of EPQ along the inclusion
H1 ⊗ (H1 ⊗H1)′ ⊂ H1 ⊗H1 ⊗H1).

7. Take Q = (1, 0, 1) and P = (0, 1, 1) (we will deal with the case of arbitrary base point later).
We claim that if EPQ is nonzero, then so is EQ. Let ξ be the Künneth component of the Hodge class
of the diagonal of F (p) in H1 ⊗H1. We then have a decomposition

H1 ⊗H1 = span(ξ)⊕ (H1 ⊗H1)′,

and hence
H1 ⊗H1 ⊗H1 = H1 ⊗ ξ ⊕ H1 ⊗ (H1 ⊗H1)′.

Thus we get a decomposition

Ext(H1 ⊗H1 ⊗H1,Q(−1)) = Ext(H1 ⊗ ξ,Q(−1))⊕ Ext(H1 ⊗ (H1 ⊗H1)′,Q(−1))

= Ext(H1,1)⊕ Ext(H1 ⊗ (H1 ⊗H1)′,Q(−1)),

where we have used the isomorphism span(ξ) −→ Q(−1) given by ξ 7→ 1 to identify H1 ⊗ ξ ∼=
H1(−1). The component of EPQ inExt(H1⊗(H1⊗H1)′,Q(−1)) is EQ. The component inExt(H1,1)

is calculated by Kaenders [Ka01]: Use Carlson’s theorem and the classical Abel-Jacobi map (ten-
sored with Q) to identify

Ext(H1,1) ∼= JH1
∼= CH0(F (p))hom ⊗Q.
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Then by [Ka01, Theorem 1.2], the component of EPQ in Ext(H1,1) is

−2g[P ] + 2[Q] +K ∈ CH0(F (p))hom ⊗Q,
where g is the genus and K the canonical divisor of F (p). By Rohrlich’s analog of Manin-Drinfeld,
this is zero. This establishes the claim. The goal is now to show that EPQ is nonzero.

8. For Z ∈ CH1(F (p) × F (p)), denote by Z12 , Z1, and Z2 the pullbacks of Z along the
embeddings F (p) −→ F (p) × F (p) given by x 7→ (x, x), x 7→ (x,Q), and x 7→ (Q, x), respectively.
Let

PZ := Z12 − Z1 − Z2 − deg(Z12)[Q] + deg(Z1)[Q] + deg(Z2)[Q] ∈ CH0(F (p))hom .

Let α be the automorphism of F (p) which sends

(x, y, z) 7→ (−y, z, x).

It is easy to see that this automorphism has two fixed points, namely the points

P1 = (η, η−1, 1) and P2 = (η−1, η, 1),

where η is a primitive 6th root of unity. Let Γ be the graph of α, considered as an element of
CH1(F (p)× F (p)). Then

Γ12 = [P1] + [P2].

On the other hand,
Γ1 = [α−1(Q)], Γ2 = [α(Q)].

Thus
PΓ = ([P1] + [P2]− 2[Q])− ([α−1(Q)] + [α(Q)]− 2[Q]).

Being supported on cusps, by Rohrlich’s theorem [α−1(Q)] + [α(Q)]− 2[Q] is torsion in the Chow
group. By Theorem 1 of Gross and Rohrlich, [P1] + [P2]− 2[Q] is of infinite order. It follows that PΓ

is of infinite order in the Chow group and hence nonzero in CH1(F (p))hom ⊗Q.

9. Darmon and et al. [DRS12] have calculated the restriction of EPQ to Hodge classes in H1 ⊗
H1. If ξZ is the H1 ⊗ H1 Künneth component of the class of Z ∈ CH1(F (p) × F (p)), denote the
restriction of EPQ under

H1(−1) −→ H1 ⊗H1 ⊗H1 ω 7→ ω ⊗ ξZ
by ξ∗Z(EPQ). Use Carlson’s theorem and the classical Abel-Jacobi map (tensored with Q) to identify

Ext(H1(−1),Q(−1)) = Ext(H1,1) ∼= JH1
∼= CH0(F (p))hom ⊗Q .

Then by [DRS12, Proposition 1.4 and Corollary 2.6] we have4

ξ∗Z(EPQ) = (

∫
diagonal

ξZ)([P ]− [Q])− PZ .

Now take Z = Γ (and P = (0, 1, 1) as before). Again by Rohrlich, [P ] − [Q] is zero. It follows that
ξ∗Γ(EPQ) and hence EPQ is not zero. We have proved the theorem for Q = (1, 0, 1).

10. We now deduce the result in the case of an arbitrary base point. For the time being,
continue to assume that Q = (1, 0, 1). Let ξ be the image of ξ ( = H1 ⊗H1 Künneth component of
the class of the diagonal of F (p)) in

∧2H1 = H2(Jac(F (p))). Then we have a decomposition

H3(Jac(F (p))) = H3(Jac(F (p)))prim ⊕H1 ∧ ξ,

4Note that there is a typo in the definition of PZ in Eq. (45) of [DRS12]; see the proof of Lemma 2.1 in the same
reference.
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whereH3(Jac(F (p)))prim is the primitive part of cohomology. By [Pu88, Corollary 6.7], the restric-
tion of AJ([(F (p))Q]− [(F (p))−Q]) ∈ JH3(Jac(F (p))) to H1 ∧ ξ as an element of

(4) J((H1 ∧ ξ)∨) ∼= J((H1)∨) = JH1
∼= CH0(F (p))hom ⊗Q

is
2((2g − 2)[Q]−K).

(Note that the first identification in Eq. (4) is via the isomorphism H1 ∧ ξ ' H1(−1) given by
ξ 7→ 1.) Again thanks to Rohrlich, (2g − 2)[Q] − K is zero. It follows that, for Q = (1, 0, 1), the
restriction ofAJ([(F (p))Q]− [(F (p))−Q]) to the primitive cohomology is nonzero. But it is a theorem
of Harris [Ha83a] that this restriction (which is called the harmonic volume) is independent of the
choice of the base point Q. The result follows. �

We end this section with two remarks.

REMARK. (1) The conjectures of Bloch and Beilinson (see [Bl84]) predict that the dimen-
sion of the subspace of CH1(Jac(F (p)))hom ⊗ Q consisting of homologically trivial cy-
cles that are defined over Q should be equal to the order of vanishing of the L-function
L(
∧3H1(F (p)), s) at s = 2. Thus in view of Theorem 4, the Ceresa cycle should contribute

to the order of vanishing of this L-function at s = 2. We hope to pursue this line of thought
in another paper.

(2) Theorem 1 of Gross and Rohrlich tells us that the image of [P1]+[P2]−2[Q] in the Jacobian
of each of the curves Cs(p) with s 6= 1, p−2, (p−1)/2 is of infinite order. This suggests that
one may be able to refine the argument of Theorem 4 to get the analogous result for the
Cs(p). For this one would have to modify the part of the argument which shows that EPQ
is nonzero (the rest of the proof can remain the same). The issue is that the automorphism
(x, y, x) 7→ (−y, x, z) of F (p) does not descend to Cs(p). We hope to come back to this in a
future work.

5. Results modulo algebraic equivalence

The goal of this section to consider the Ceresa cycle of a complex smooth projective curve C
modulo algebraic equivalence. Using an infinitesimal argument, Ceresa [Ce83] showed that for a
generic curve of genus ≥ 3, the Ceresa cycle is algebraically nontrivial. For explicit curves on the
other hand, the situation is far from satisfactory. There are essentially two approaches to the prob-
lem in the literature, a Hodge theoretic and an `-adic approach, first carried out by B. Harris and
Bloch, respectively, in the example of F (4). The Key property of Fermat curves that is exploited
by both methods is that H3(Jac) (after extending the coefficients to a finite extension of Q) de-
composes as M + I , where M has only Hodge types (3, 0) and (0, 3) in the Hodge decomposition,
while the components of these types in I are zero. Both the Hodge theoretic and `-adic methods
are used to give sufficient conditions for nontriviality (or being of infinite order) modulo algebraic
equivalence. The sufficient condition for the `-adic method is harder to verify in general, but in the
few examples that it can be verified it has lead to stronger results.

We start with a (non-exhaustive) list of known results:

• B. Harris [Ha83b] showed with a Hodge theoretic argument that the Ceresa cycle of F (4)
is algebraically nontrivial. His work also gave a sufficient condition for the Ceresa cycle
of F (4) to be of infinite order modulo algebraic equivalence, in terms of irrationality of a
certain period integral.
• Shortly after, Bloch [Bl84] used an `-adic argument to show that the Ceresa cycle of F (4)

is of infinite order modulo algebraic equivalence.
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• Kimura [Ki00] built on Bloch’s method to give sufficient conditions for nontriviality and
being of infinite order modulo algebraic equivalence for certain Fermat quotients. He
used them to show that the Ceresa cycle of a quotient of F (7) is of infinite order modulo
algebraic equivalence.
• Using more sophisticated adaptations of Harris’ method, Tadokoro (see [Ta16] and the ref-

erences therein) and Otsubo [Ot12] have obtained several other results on nontriviality of
the Ceresa cycles of Fermat curves and their quotients modulo algebraic equivalence. In
chronological order, Tadokoro proved nontriviality for the Klein quartic and the Fermat
curve F (6). Then Otsubo showed that the Ceresa cycle of F (n) for n ≤ 1000 is alge-
braically nontrivial. The work of Otsubo gives an algorithm that can be used to check
nontriviality for any specific Fermat curve. Tadokoro generalized the work of Otsubo to
the quotients Cs(p) of Fermat curves with p ≡ 1 (mod 3) and verified algebraic nontriv-
iality for all such p < 1000. In all cases one also gets sufficient conditions for the Ceresa
cycle to have infinite order modulo algebraic equivalence, but these conditions have not
been verified in any case.

In the remainder of this section we focus on the Hodge theoretic argument. We shall give
a sketch of the argument of Harris; the later variations of Otsubo and Tadokoro follow the same
principles. The argument is based on a well-known fact: that for a homologically trivial cycle Z
of dimension p on a complex smooth projective variety X with Z = ∂T for an integral topological
chain T , if Z is algebraically trivial then integration over T , considered as a function on the space
of closed holomorphic (2p + 1)-forms on X , coincides with an integral homology class. This is a
weaker version of the statement that the Abel-Jacobi image of Z is in the algebraic part of JH2p+1

(see Remark (4) at the end of Section 3.4).
Let us start with a general observation. Let A be an integral Hodge structure of weight 2k− 1.

Since the elements of AR (= AZ ⊗ R) in AC are fixed by complex conjugation,

AR ∩ F kAC = 0.

Thus the inclusion AR ⊂ AC gives an injection

AR −→
AC
F kAC

,

which is an isomorphism of real vector spaces since dimC F
kAC = 1/2 dimCAC. Thus we get an

isomorphism
AR
AZ
−→ JA.

Now apply this to A = H∨, where H has odd weight and HZ is free. We get

HomR(HR,R)

HomZ(HZ,Z)

'−→ J(H∨).

On the other hand, applying HomZ(HZ, ) to the short exact sequence

0 −→ Z −→ R −→ R
Z
−→ 0

(since HZ is free) we get
HomZ(HZ,R)

HomZ(HZ,Z)

'−→ Hom(HZ,
R
Z

) .

Thus we get an isomorphism

(5) J(H∨)
'−→ Hom(HZ,

R
Z

) .
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Unwinding definitions, we see that this isomorphism sends an element [f ] ∈ J(H∨) with f : HC →
C defined over R (i.e. with f(HR) ⊂ R) to the composition

HR
f−→ R −→ R

Z
.

We now return to the question of algebraic nontriviality of Ceresa cycles. Let C be a smooth
projective curve of genus g > 0 and denote H1 = H1(C) = H1(Jac(C)). Fix a base point Q ∈ C.
Using the isomorphism Eq. (5) for H = H3(Jac(C)) =

∧3H1, we may think of AJ([CQ]− [C−Q ]) as
a map

v : H3(Jac(C)) =
∧3

H1
Z −→

R
Z
.

The works of Harris and Pulte ([Ha83a] and [Pu88]) express v in terms of iterated integrals.
We consider C = F (4), a curve of genus 3. Consider the ring Z[i] of Guassian integers. From

the work of Rohrlich on periods of Fermat curves (see appendix of [Gr78]) it follows that the space
of holomorphic forms on F (4) has a basis with periods in Z[i]. See [Ha83b] for an explicit such
basis. Thus H3,0 ⊂ H3(Jac,C) has a basis in

∧3H1
Z ⊗ Z[i], where H1

Z ⊗ Z[i] is identified with
elements of H1

C with periods in Z[i]. Tensoring v with Z[i], we have a map

v :
∧3

H1
Z ⊗ Z[i] −→ C

Z[i]
.

If [CQ]− [C−Q ] is algebraically trivial (resp. of finite order), then v must be zero (resp. of finite order)
on the elements of H3,0 with periods in Z[i]. If θ1, θ2, θ3 form a basis of the space of holomorphic
forms onF (4) and have periods in Z[i], andK1, . . . ,K6 form a basis ofH1(C,Z) with representative
loops γ1, . . . , γ6 ∈ π1(C,Q), then by Harris-Pulte

v(θ1 ∧ θ2 ∧ θ3) =
∑
j

cj

∫
γj

θ1θ2 (mod Z[i]),

where
∑
j
cjKj is the Poincaré dual to [θ3] on C. Everything here can be explicitly calculated; in the

end, one has a sufficient condition for algebraic nontriviality (resp. algebraically having infinite
order) is terms of the value of an explicit integral not belonging to Z[i] (resp. Q(i)). The former is
checked through numerical approximation done with a computer, while the latter is very hard to
verify (and still open).
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